Abstract

Simulations of ground vehicles are extensively used by military and commercial vehicle developers to aid in the design process. In the past, ground vehicle simulations have focused on non-real-time models. However with the advancement of computers and modeling methodologies, real-time multi-body models have become one of the standard tools used by vehicle developers. Multi-body models are composed of joint, body, and force elements which map well into a modular modeling approach. Based on recursive techniques a set of reusable components were developed for use in a graphical simulation and modeling environment. The components were then connected to form a real-time multi-body model of a Ford Taurus. Finally, the Taurus model was integrated with simulator cueing subsystems to build a complete driving simulator. The performance of the Taurus model was compared with test data. It was found that the vehicle model was both accurate and ran much faster than real-time. Due to the model formulation, the current set of modular components are limited to modeling open treed systems with either a fixed or mobile base body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.