Abstract

Gene therapies that utilize convention-enhanced delivery (CED) will require close monitoring of vector infusion in real time and accurate prediction of drug distribution. The magnetic resonance imaging (MRI) contrast agent, Gadoteridol (Gd), was used to monitor CED infusion and to predict the expression pattern of glial cell line-derived neurotrophic factor (GDNF) protein after administration of adeno-associated virus type 2 (AAV2) vector encoding human pre-pro-GDNF complementary DNA. The nonhuman primate (NHP) thalamus was utilized for modeling infusion to allow delivery of volumes more relevant to planned human studies. AAV2 encoding human aromatic L-amino acid decarboxylase (AADC) was coinfused with AAV2-GDNF/Gd to confirm regions of AAV2 transduction versus extracellular GDNF diffusion. There was a close correlation between Gd distribution and GDNF or AADC expression, and the ratios of expression areas of GDNF or AADC versus Gd were both close to 1. Our data support the use of Gd and MRI to monitor AAV2 infusion via CED and to predict the distribution of GDNF protein after AAV2-GDNF administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.