Abstract

This study aimed to develop a novel method for real-time monitoring of the intracellular redox states in a methanotroph Methylococcus capsulatus, using Peredox as a genetically encoded fluorescent sensor of the NADH:NAD+ ratio. As expected, the fluorescence derived from the Peredox-expressing M. capsulatus transformant increased by supplementation of electron donor compounds (methane and formate), while it decreased by specifically inhibiting the methanol oxidation reaction. Electrochemical measurements confirmed that the Peredox fluorescence reliably represents the intracellular redox changes. This study is the first to construct a reliable redox-monitoring method for methanotrophs, which will facilitate to develop more efficient methane-to-methanol bioconversion processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.