Abstract

Detection of deoxyribozyme (DNAzyme) cleavage process usually needs complex and time-consuming radial labeling, gel electrophoresis and autoradiography. This paper reported an approach to detect DNAzyme cleavage process in real time using a fluorescence probe. The probe was employed as DNAzyme substrate to convert directly the cleavage information into fluorescence signal in real time. Compared with traditional approach, this non-isotope method not only brought a convenient means to monitor the DNAzyme cleavage reaction, but also offered abundant dynamic data for choosing potential gene therapeutic agents. It provides a new tool for DNAzyme research, as well as a new insight into research on human disease diagnosis. Based on this method, 8–17deoxyribozyme (8–17DNAzyme) against hepatitis C virus RNA (HCV-RNA) was designed and the cleavage process was studied in real time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.