Abstract
In biology and chemistry, the ultimate goal is to monitor single molecules without labels. However, long-term monitoring of label-free molecules remains a challenge. Here, on the basis of the photothermal effect of gold nanorods (GNRs), we developed a platform for monitoring of a single molecule employing surface-enhanced Raman spectroscopy (SERS). Laser re-irradiation forms 1.0 nm gaps between GNRs, allowing us to observe single crystal violet (CV) molecules blinking for up to 4 min with dynamic surface-enhanced Raman spectroscopy (D-SERS). Bianalyte experiments confirm single-molecule features at CV concentrations of 10-14 M. Combining density functional theory (DFT) calculations with a free CV molecule observed in millisecond D-SERS, we propose that CV molecules can be confined to sub-nanometer space and the orientation of an individual CV moving in the range of 50-90° can be dynamically captured by D-SERS. This will provide a novel idea for effective exploration of the temporal and spatial dynamic processes of different reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.