Abstract
This paper describes a real-time model-based fault detection and diagnosis software. The electric machines diagnosis system (EMDS) covers field winding shorted-turns fault in alternators and stator windings shorted-turns fault in induction motors. The EMDS has a modular architecture. The modules include: acquisition and data treatment; well-known parameters estimation algorithms, such as recursive least squares (RLS) and extended Kalman filter (EKF); dynamic models for faults simulation; faults detection and identification tools, such as M.L.P. and S.O.M. neural networks and fuzzy C-means (FCM) technique. The modules working together detect possible faulty conditions of various machines working in parallel through routing. A fast, safe and efficient data manipulation requires a great DataBase managing system (DBMS) performance. In our experiment, the EMDS real-time operation demonstrated that the proposed system could efficiently and effectively detect abnormal conditions resulting in lower-cost maintenance for the company.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.