Abstract

An in situ single point two-color laser interferometer is used to monitor in real-time the thickness of thin transparent films during processing. The instantaneous change of film thickness is determined by comparing the measured laser reflection interference to that calculated by a model. The etch or deposition rates of the film are determined within 1–2 seconds. The film thickness is also determined in real-time from the phase difference of the reflected laser intensity between the two laser colors. Use of two-color laser interferometry improves the accuracy of the calculated etch or growth rates of the film considerably. Moreover, the two colors provide a clear distinction between film etching and deposition, which may often occur during the same process, and can not be determined by a single color interferometer. The uniformity of the film's etch or deposition rates across the substrate is monitored by an in situ full-wafer image interferometer. The combined use of these two sensors provide instantaneous information of the film thickness, etch or growth rates, as well as time averaged uniformity of the process rates. This diagnostic setup is very useful for process development and monitoring, which is also suitable for manufacturing environment, and can be used for real-time process control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call