Abstract
The interfacial adsorption and interaction of crystal violet (CV) at the silica-water interface was real-time measured based on a total-internal-reflection-induced near-field evanescent wave (TIR-NFEW). A silica optical fiber (SOF) was employed as a charged substrate for CV adsorption and as a light transmission waveguide for evanescent wave production for the investigation system. According to the change of evanescent wave intensity, the CV adsorption behavior could be real-time monitored at the silica-aqueous interface. The Langmuir adsorption model and two kinetic models were applied to obtain the related thermodynamic and kinetic data, including the adsorption equilibrium constant (Kads) of (5.9 ± 1.5) × 104 M-1 and adsorption free energy (ΔG) of -21.6 ± 0.6 kJ mol-1. Meanwhile, this method was shown to be able to isolate the elementary processes of adsorption and desorption under steady-state conditions, and gave an adsorption rate constant (ka) and desorption rate constant (kd) of 2089 ± 6.96 M min-1 and 0.35 ± 0.0012 min-1 for a 15 rpm flow rate. The surface interaction process was revealed and the adsorption mechanism proposed by a molecular orientation adsorption model with three-stage-concentration, indicating that CV first adsorbed on Si-O- sites through electrostatic attraction, then on Si-OH sites through hydrogen bonding, and lastly on the surface through van der Waals forces with different CV concentrations. This study can provide a molecular-level interpretation of CV adsorption and provides important insights into how CV adsorption can be controlled at the silica-water interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.