Abstract

Advances in science and engineering are empowering high-rate dynamic systems, such as hypersonic vehicles, advanced weaponries, and active shock and blast mitigation strategies. The real-time estimation of the structural health of high-rate systems, termed high-rate structural health monitoring (HRSHM), is critical in designing decision mechanisms that can ensure structural integrity and performance. However, this is a difficult task, because three aspects uniquely characterize these systems: (1) large uncertainties in the external loads; (2) high levels of non-stationarities and heavy disturbances; and (3) unmodeled dynamics generated from changes in system configurations. In addition, because these systems are experiencing events of high amplitudes (often beyond 100 g) over short durations (under 100 ms), a successful feedback mechanism is one that can operate under 1 ms. A solution to the unique system characteristics and temporal constraint is the design and application of real-time learning algorithms. Here, we review and discuss a real-time learning algorithm for HRSHM applications. In particular, after introducing the HRSHM challenge, we explore fast real-time learning for time series prediction using conventional and deep neural networks and discuss a path to rapid real-time state estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.