Abstract

Real-time lock-in imaging with high-frequency modulation (up to 16 kHz) was successfully performed at high spatial resolution (640×480 pixels) using a newly developed high-speed image-processing charge coupled device (CCD) video camera. To achieve high-resolution lock-in imaging, the high-speed image-processing CCD video camera incorporates a high-definition TV image sensor that uses a high-definition frame-interline-transfer (FIT) CCD architecture. A novel FIT-CCD driving method, in which vertical CCD shift registers are utilized as a temporary frame memory, enables lock-in imaging at a modulation frequency in excess of the video frame rate (30 Hz). Furthermore, since the high-speed image-processing CCD video camera has a function for subtracting images taken with high-frequency modulation, a lock-in image with no background contrast can be observed in real time. The phase detection function for lock-in imaging, when coupled with real-time image processing using the high-speed image-processing CCD video camera, makes it possible to dynamically observe the phase distribution in a two-dimensional area. As a demonstration of the real-time lock-in imaging, the wave pattern that appears on the surface of water was successfully visualized by a real-time lock-in imaging system that uses the high-speed image-processing CCD video camera.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.