Abstract

In this paper, we propose a model-free unsupervised learning approach to forecast real-time locational marginal prices (RTLMPs) in wholesale electricity markets. By organizing system-wide hourly RTLMP data into a 3-dimensional (3D) tensor consisting of a series of time-indexed matrices, we formulate the RTLMP forecasting problem as a problem of generating the next matrix with forecasted RTLMPs given the historical RTLMP tensor, and propose a generative adversarial network (GAN) model to forecast RTLMPs. The proposed formulation preserves the spatio-temporal correlations among system-wide RTLMPs in the format of historical RTLMP tensor. The proposed GAN model learns the spatio-temporal correlations using the historical RTLMP tensors and generate RTLMPs that are statistically similar and temporally coherent to the historical RTLMP tensor. The proposed approach forecasts system-wide RTLMPs using only publicly available historical price data, without involving confidential information of system model, such as system parameters, topology, or operating conditions. The effectiveness of the proposed approach is verified through case studies using historical RTLMP data in Southwest Power Pool (SPP).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.