Abstract

The capability of obtaining cross-sectional, high resolution images of arteries with the use of ultrasound catheters has recently been demonstrated in animal studies. In this study the in vivo feasibility of intravascular ultrasound imaging in humans was evaluated. In 26 patients who had undergone diagnostic cardiac catheterization or iliofemoral arteriography, 1 of 3 different models of 20-MHz ultrasound catheters was advanced retrograde, into the iliac arteries and aorta or anterograde into the femoral arteries and real-time cross-sectional images of the arteries were obtained in all. In 10, the iliac arteries were normal and appeared circular and pulsatile with a 3-layered wall and crisply defined lumens. In 7 patients with nonobstructive plaques, the plaque was easily identified in the ultrasound image as a linear, bright, adynamic echo-dense structure. In 4 with obstructive disease in the iliac artery, the arterial lumen appeared irregular, bordered by a thickened, nonpulsatile wall. Variable grades of atheromatous abnormalities in the wall could be visualized. In all 5 patients with arteriographic evidence of obstructive disease of the femoral artery, intravascular ultrasound displayed reduced lumens and irregular borders with protruding high-intensity echoes in the wall. In all patients, the arterial lumen and the normal or abnormal wall were well visualized in the ultrasound images. There were no complications. This study thus demonstrates the feasibility of intravascular ultrasound imaging of arterial circulation in humans. With further improvements in catheter design and image quality, this imaging approach is likely to have a number of potential applications in the assessment of peripheral and coronary arterial diseases and in guiding interventional therapeutic procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.