Abstract

BackgroundDue to the high anatomical variability and limited visualization of the scapula, optimal screw placement for baseplate anchorage in reversed total shoulder arthroplasty (rTSA) is challenging. Image quality plays a key role regarding the decision of an appropriate implant position. However, these data a currently missing for rTSA and were investigated in the present study. Furthermore, the rate of required K-wire changes for the central peg as well as post-implantation inclination and version were assessed.MethodsIn ten consecutive patients (8 female, 86 years, range 74–94) with proximal humeral fracture and indication for rTSA, an intraoperative 3D-scan of the shoulder with a 3D image intensifier (Ziehm Vision FD Vario 3D© [Ziehm Imaging GmbH, Nürnberg, Germany]) was performed after resection of the humeral head. Using the Vectorvision© Software (Brainlab AG, Feldkirchen, Germany), the virtual anatomy was compared to the visible anatomical landmarks. After implantation of the baseplate, a 3D scan was performed. All 3D scans included multiplanar reconstruction (MPR) and the cinemode to examine screw and baseplate placement. The rate of required K-wire changes was assessed. The intraoperative 3D image quality (modified visual analogue scale [VAS] and point system) was assessed before and after implantation of the glenoid component. Inclination and version were determined in post-implantation scans.ResultsThe virtually presented anatomical landmarks always correlated to the anatomical visible points indicating an good virtual accuracy. The central K-wire position was corrected in three cases due to a deviation from the face plane technique position. The VAS was higher for the pre-implantation MPR (6.7, range 5–8) compared to the post-implantation acquired MPR (5.1, range 4–6; p = 0.0002). The point system showed a reduced quality in all subcategories, especially regarding the grading of the articular surfaces. The preoperative (7.9, range 6–9) and post-implantation (7.9, range 6–9) cinemode displayed no significant differences (p = 0.6).ConclusionThe present study underlines the need for the improvement of 3D image intensifiers algorithms to reduce artifact associated impaired image quality to enhance the benefit of real-time intraoperative 3D scans and navigation.

Highlights

  • Due to the high anatomical variability and limited visualization of the scapula, optimal screw placement for baseplate anchorage in reversed total shoulder arthroplasty is challenging

  • We hypothesized that the use of Three- Dimensional (3D) scan-based navigation will reliably detect visible anatomical landmarks, decrease the rate of K-wire repositioning of the central peg and yield good results in terms of version and inclination

  • The multiplanar reconstructions (MPR) generated by the 3D image intensifier preimplantation yielded a higher visual analogous scale (VAS) (6.7, range 5–8) compared to the post-implantation acquired MPR (5.1, range 4–6; p = 0.0002; Table 4) (Fig. 2)

Read more

Summary

Introduction

Due to the high anatomical variability and limited visualization of the scapula, optimal screw placement for baseplate anchorage in reversed total shoulder arthroplasty (rTSA) is challenging. Image quality plays a key role regarding the decision of an appropriate implant position These data a currently missing for rTSA and were investigated in the present study. Data concerning the image quality of the real-time obtained 3D scans pre- and post-implantation are missing. Such data were previously obtained for different 3D image intensifiers determining the overall clinical applicability using a modified visual analogous scale (VAS) and a point system [24]. These data may highlight the benefit of real-time intraoperative 3D image intensifier-based navigation. We hypothesized that the use of 3D scan-based navigation will reliably detect visible anatomical landmarks, decrease the rate of K-wire repositioning of the central peg and yield good results in terms of version and inclination

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call