Abstract

BackgroundElectromyography (EMG) is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG) can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements.MethodsWe propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS) integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP) and least mean square (LMS) is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD) and time-frequency representation (TFR). Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA) is utilized.ResultsIn this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal are time and time-frequency domain. In this work we demonstrate the capability of an EMG pattern recognition system using ANFIS as classifier with a real-time learning method. Our results reveal that the utilized real-time ANFIS approach along with the user evaluation provides a 96.7% average accuracy. This rate is superior to the previously reported result utilizing artificial neural networks (ANN) real-time method [1].ConclusionThis study shows that ANFIS real-time learning method coupled with mixed time and time-frequency features as EMG features can provide acceptable results for designing sEMG pattern recognition system suitable for hand prosthesis control.

Highlights

  • Electromyography (EMG) is the study of muscle function through the inquiry of electrical signals that the muscles emanate

  • Since hand motions result from contraction of the muscles in the forearm section, we used surface electrodes for measuring sEMG signal from the extensor digitorum, the extensor carpi radialis, the palmaris longus and the flexor carpi ulnaris

  • The results indicated that the adaptive neuro-fuzzy inference system (ANFIS) system exhibits a superior performance as compared to artificial neural networks (ANN) noted in previous studies [1]

Read more

Summary

Introduction

Electromyography (EMG) is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG) can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. The EMG signal provides us with information about the neuromuscular activity from which it originates. This has been fundamental to its use in clinical diagnosis, and as a source for control of assistive devices. The offline approach was incapable of adjusting its inner states to correspond to real-time operator's variations of hand movements [3,4,5] To decrease these effects on EMG pattern recognition system and to eliminate its dependence on individual subjects, real-time training methods were introduced [1]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call