Abstract

The integration of structural identification and vibration optimal control has been studied. Since the semiactive optimization vibrational control of civil structures needs to be implemented by massive control devices such as mass dampers, it is necessary to investigate the real-time integration of identification and semiactive optimization vibration control for mass damper-building combined systems. However, there is a lack of such studies in the literature. In this paper, a methodology is presented for real-time integration of identification and semiactive optimization vibration control of the mass damper-building combined system under known/unknown seismic excitations. For the combined system under known seismic excitations, the identification is implemented by the extended Kalman filter (EKF) using only partial structural acceleration responses. The identified structural state and parameters of mass damper-building systems are integrated in real time for the optimal control of systems by the linear-quadratic regulator (LQR) control algorithm and the Hrovat semiactive optimization control strategy via semiactive optimization mass dampers (SAMD). Then, it is extended to the scenario of unknown seismic excitations. The partially measured structural acceleration responses are absolute ones in this case, so the generalized extended Kalman filter with unknown input (GEKF-UI) developed by the authors is used to identify the structural input-state parameters of the mass dampers-building combined systems. The identification results are also integrated in real time for the semiactive optimization control of the combined system via SAMD. Two numerical simulation examples are used to test the proposed integration methods. It is shown that the proposed integration methods can reach almost the same optimal control effects as the conventional semiactive optimization control with known parameters of the mass damper-building combined systems under known/unknown seismic excitations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.