Abstract

BackgroundThe high cost of enzymes is one of the key technical barriers that must be overcome to realize the economical production of biofuels and biomaterials from biomass. Supplementation of enzyme cocktails with lytic polysaccharide monooxygenase (LPMO) can increase the efficiency of these cellulase mixtures for biomass conversion. The previous studies have revealed that LPMOs cleave polysaccharide chains by oxidization of the C1 and/or C4 carbons of the monomeric units. However, how LPMOs enhance enzymatic degradation of lignocellulose is still poorly understood.ResultsIn this study, we combined enzymatic assays and real-time imaging using atomic force microscopy (AFM) to study the molecular interactions of an LPMO [TrAA9A, formerly known as TrCel61A) from Trichoderma reesei] and a cellobiohydrolase I (TlCel7A from T. longibrachiatum) with bacterial microcrystalline cellulose (BMCC) as a substrate. Cellulose conversion by TlCel7A alone was enhanced from 46 to 54% by the addition of TrAA9A. Conversion by a mixture of TlCel7A, endoglucanase, and β-glucosidase was increased from 79 to 87% using pretreated BMCC with TrAA9A for 72 h. AFM imaging demonstrated that individual TrAA9A molecules exhibited intermittent random movement along, across, and penetrating into the ribbon-like microfibril structure of BMCC, which was concomitant with the release of a small amount of oxidized sugars and the splitting of large cellulose ribbons into fibrils with smaller diameters. The dividing effect of the cellulose microfibril occurred more rapidly when TrAA9A and TlCel7A were added together compared to TrAA9A alone; TlCel7A alone caused no separation.ConclusionsTrAA9A increases the accessible surface area of BMCC by separating large cellulose ribbons, and thereby enhances cellulose hydrolysis yield. By providing the first direct observation of LPMO action on a cellulosic substrate, this study sheds new light on the mechanisms by which LPMO enhances biomass conversion.

Highlights

  • The high cost of enzymes is one of the key technical barriers that must be overcome to realize the eco‐ nomical production of biofuels and biomaterials from biomass

  • lytic poly‐ saccharide monooxygenase (LPMO) has been reported to enhance CBH I hydrolysis of pretreated biomass [8, 11]

  • This result is consistent with the previous work showing that hydrolysis of cellulose in pretreated corn stover increased approximately 6% by adding a Thielavia terrestris LPMO to T. reesei cellulase mixtures [8]

Read more

Summary

Introduction

The high cost of enzymes is one of the key technical barriers that must be overcome to realize the eco‐ nomical production of biofuels and biomaterials from biomass. Supplementation of enzyme cocktails with lytic poly‐ saccharide monooxygenase (LPMO) can increase the efficiency of these cellulase mixtures for biomass conversion. The previous studies have revealed that LPMOs cleave polysaccharide chains by oxidization of the C1 and/or C4 carbons of the monomeric units. Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes that stimulate biomass hydrolysis and improve the efficiency of biomass conversion [8,9,10,11]. Unlike cellulases that cleave glycosidic bonds by hydrolysis [12], LPMOs are copper-dependent enzymes that lyse polysaccharide chains by oxidation at either the C1 or the C4 carbon of the glucose unit in the presence of an external electron donor [13,14,15,16,17]. The mechanism by which the addition of LPMOs to cellulase mixtures enhances the overall yield of glucose has not been clearly elucidated

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.