Abstract

A method of analysing nucleation and crystallization kinetics, based on real time image analysis and hot stage optical microscopy, has been used to investigate the isothermal crystallization of different grades polyoxymethylene. The data were compared with results from differential scanning calorimetry (DSC), using a simple numerical simulation to model the effects of finite smaple thickness on the form of the isothermal DSC curves. This simulation was then used to predict the microstructural development in a bulk sample for different boundary conditions, taking into account latent heat evolution and diffusion during crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.