Abstract
This paper presents an effective approach for recognising human actions from depth video sequences by employing depth motion maps (DMMs) and convolutional neural networks (CNNs). Depth maps are projected onto three orthogonal planes, and frame differences under each view (front/side/top) are then accumulated through an entire depth video sequence generating a DMM. We build a model architecture of multi-view convolutional neural network (MV-CNN) containing multiple networks to deal with three DMMs (DMMf, DMMs, DMMt). The output of full-connected layer under each view is integrated as feature representation, which is then learned in the last softmax regression layer to predict human actions. Experimental results on MSR-Action3D dataset and UTD-MHAD dataset indicate that the proposed approach achieves state-of-the-art recognition performance and is appropriate for real-time recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of High Performance Computing and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.