Abstract
Event cameras can show better performance than frame cameras in challenging scenarios, such as fast-moving environments or high-dynamic-range scenes. However, it is still difficult for event cameras to replace frame cameras in non-challenging normal scenarios. In order to leverage the advantages of both cameras, we conduct a study for the heterogeneous stereo camera system which employs both an event and a frame camera. The proposed system estimates the semi-dense disparity in real-time by matching heterogeneous data of an event and a frame camera in stereo. We propose an accurate, intuitive and efficient way to align events with 6-DOF camera motion, by suggesting the maximum shift distance method. The aligned event image shows high similarity to the edge image of the frame camera. The proposed method can estimate poses of an event camera and depth of events in a few frames, which can speed up the initialization of the event camera system. We verified our algorithm in the DSEC dataset. The proposed hetero-stereo matching outperformed other methods. For real-time operation, we implemented our code using parallel computation with CUDA and release our code open source:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.