Abstract

Accurate and real-time hand gesture recognition is essential for controlling advanced hand prostheses. Surface Electromyography (sEMG) signals obtained from the forearm are widely used for this purpose. Here, we introduce a novel hand gesture representation called Temporal Muscle Activation (TMA) maps which captures information about the activation patterns of muscles in the forearm. Based on these maps, we propose an algorithm that can recognize hand gestures in real-time using a Convolution Neural Network. The algorithm was tested on 8 healthy subjects with sEMG signals acquired from 8 electrodes placed along the circumference of the forearm. The average classification accuracy of the proposed method was 94%, which is comparable to state-of-the-art methods. The average computation time of a prediction was 5.5ms, making the algorithm ideal for the real-time gesture recognition applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.