Abstract

Real-time deformation of individual multiwalled boron nitride nanotubes (BNNTs) was investigated using an atomic force microscopy (AFM) stage installed inside the chamber of a transmission electron microscopy (TEM) system. These in situ AFM-TEM experiments were conducted in following two deformation regimes: a small-angle (∼65°) and a large-angle (∼120°) cyclic bending process. BNNTs survived from the low-angle test and their modulus was determined as ∼0.5 TPa. Fracture failure of individual BNNTs was discovered in the large-angle cyclic bending. The brittle failure mechanism was initiated from the outermost walls and propagated toward the tubular axis with discrete drops of applied forces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.