Abstract

Assessment of food intake has a wide range of applications in public health and life-style related chronic disease management. In this paper, we propose a real-time food recognition platform combined with daily activity and energy expenditure estimation. In the proposed method, food recognition is based on hierarchical classification using multiple visual cues, supported by efficient software implementation suitable for realtime mobile device execution. A Fischer Vector representation together with a set of linear classifiers are used to categorize food intake. Daily energy expenditure estimation is achieved by using the built-in inertial motion sensors of the mobile device. The performance of the vision-based food recognition algorithm is compared to the current state-of-the-art, showing improved accuracy and high computational efficiency suitable for realtime feedback. Detailed user studies have also been performed to demonstrate the practical value of the software environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.