Abstract
A modelling scheme is developed for real-time flood forecasting. It is composed of (a) a rainfall forecasting model, (b) a conceptual rainfall-runoff model, and (c) a stochastic error model of the ARMA family for forecast error correction. Initialization of the rainfall-runoff model is based on running this model on a daily basis for a certain period prior to the flood onset while parameters of the error model are updated through the Recursive Least Squares algorithm. The scheme is suitable for the early stages of operation of flood forecasting systems in the presence of inadequate historical data. A validation framework is set up which simulates real-time flood forecasting conditions. Thus, the effects of the procedures for rainfall-runoff model initialization, forecast error correction and rainfall forecasting are assessed. Two well-known conceptual rainfall-runoff models (the Soil Moisture Accounting model of the US National Weather Service River Forecast Service—SMA-NWSRFS and TANK) together with data from a Greek basin are used for illustration purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.