Abstract

Conventional film-screen mammography is the most effective tool for the early detection of breast cancer currently available. However, conventional mammography has relatively low sensitivity to detect small breast cancers (under several millimeters) owing to an overlap in the appearances of benign and malignant lesions, and surrounding structure. The limitations accompanying conventional mammography is to be addressed by incorporating a cone beam volume CT imaging technique with a recently developed flat panel detector. Computer simulation and preliminary studies have been performed to prove the feasibility of developing a flat panel detector-based cone beam volume CT breast imaging (FPD-CBVCTBI) technique. In this study, a specimen experiment is performed to confirm the findings in the computer simulation and previous phantom studies using the current prototype cone beam volume CT scanner. The results indicate that the CBVCTBI technique effectively removes structure overlap and significantly improves the detectability of small breast tumors. More importantly, the results also demonstrate CBVCTBI offers good correlation with pathology images with the radiation dose level less than or equal to that of conventional mammography. The results from this study suggest that FPD-CBVCTBI is a potentially powerful breast-imaging tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call