Abstract

Abstract: Recognition from faces is a popular and significant technology in recent years. Face alterations and the presence of different masks make it too much challenging. In the real-world, when a person is uncooperative with the systems such as in video surveillance then masking is further common scenarios. For these masks, current face recognition performance degrades. Still, difficulties created by masks are usually disregarded. Face recognition is a promising area of applied computer vision . This technique is used to recognize a face or identify a person automatically from given images. In our daily life activates like, in a passport checking, smart door, access control, voter verification, criminal investigation, and many other purposes face recognition is widely used to authenticate a person correctly and automatically. Face recognition has gained much attention as a unique, reliable biometric recognition technology that makes it most popular than any other biometric technique likes password, pin, fingerprint, etc. Many of the governments across the world also interested in the face recognition system to secure public places such as parks, airports, bus stations, and railway stations, etc. Face recognition is one of the well-studied real-life problems. Excellent progress has been done against face recognition technology throughout the last years. The primary concern to this work is about facial masks, and especially to enhance the recognition accuracy of different masked faces. A feasible approach has been proposed that consists of first detecting the facial regions. The occluded face detection problem has been approached using Cascaded Convolutional Neural Network (CNN). Besides, its performance has been also evaluated within excessive facial masks and found attractive outcomes. Finally, a correlative study also made here for a better understanding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.