Abstract

In the past, a typical way of executing simulations in the real-time environment had been to use transfer function models, state-variable models or reduced-order aero-thermodynamic models. These models are typically not as accurate as the conventional full-fidelity aero-thermodynamic simulations used as basis for generation of the real-time models. Also, there is a cost associated with creation and maintenance of these derived real-time models. The ultimate goal is to use the high fidelity aero-thermodynamic simulation as the real-time model. However, execution of the high fidelity aero-thermodynamic simulation in a real-time environment is a challenging objective since accuracy of the simulation cannot be sacrificed to optimize execution speed, yet execution speed still has to be limited by some means to fit into real-time constraint. This paper discusses the methodology used to resolve this challenge, thereby enabling use of a contemporary turbofan engine high fidelity aero-thermodynamic simulation in the real-time environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.