Abstract
Communication networks have been traditionally employed in motion control applications, especially within factory automation systems. While in the past they were merely used to exchange non time critical data (e.g. parameters and configuration data) nowadays they allow for much more powerful performance. In particular, the recently introduced Real-time Ethernet (RTE) networks, have been explicitly designed in order to cope with very tight timing constraints in terms of both determinism and real-time. In this paper we focus on two popular RTE networks, namely Ethernet POWERLINK and EtherCAT, and provide an example of their employment for a coordinated motion control application. In particular, we consider the tracking of a circular trajectory by the coordinated motion of two independent axes where the velocity set-points are transmitted to the electrical drives implementing the axis control by means of the RTE networks. After providing some essential features of the two networks, we describe the configurations adopted for the coordinated motion control application. Then we check the effectiveness of the solution proposed by means of numerical simulations which take into consideration possible error scenarios deriving from the adoption of the communication networks such as transmission errors, communication delays and cable breaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.