Abstract

We study the real-time dynamics of the local energy density in the spin-1/2 XXZ chain starting from initial states with an inhomogeneous profile of bond energies. Numerical simulations of the dynamics of the initial states are carried out using the adaptive time-dependent density matrix renormalization group method. We analyze the time dependence of the spatial variance associated with the local energy density to classify the dynamics as either ballistic or diffusive. Our results are consistent with ballistic behavior both in the massless and the massive phase. We also study the same problem within Luttinger Liquid theory and obtain that energy wave-packets propagate with the sound velocity. We recover this behavior in our numerical simulations in the limit of very weakly perturbed initial states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call