Abstract

An electron-holographic interference microscope that produces a time-sequential interference micrograph at a TV rate is developed. In this system, the electron off-axis hologram detected with a TV camera is transferred to a liquid-crystal spatial light modulator as a video signal. The liquid-crystal spatial light modulator can function as a thin amplitude hologram or a thin phase hologram. Time-sequential interference micrograph is obtained at a TV rate by superimposition of a plane reference wave onto the reconstructed object wave. Experimental results for observing a dynamic domain-wall motion in thin Permalloy film are demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.