Abstract
This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network (1D-CNN) and long short-term memory (LSTM) method in the image frequency domain. The so-called 1D-CNN-LSTM algorithm is trained using thousands of images of cracked and non-cracked concrete bridge decks. In order to improve the training efficiency, images are first transformed into the frequency domain during a preprocessing phase. The algorithm is then calibrated using the flattened frequency data. LSTM is used to improve the performance of the developed network for long sequence data. The accuracy of the developed model is 99.05%, 98.9%, and 99.25%, respectively, for training, validation, and testing data. An implementation framework is further developed for future application of the trained model for large-scale images. The proposed 1D-CNN-LSTM method exhibits superior performance in comparison with existing deep learning methods in terms of accuracy and computation time. The fast implementation of the 1D-CNN-LSTM algorithm makes it a promising tool for real-time crack detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.