Abstract

This paper presents an experimental demonstration of analog radio-over-fiber (ARoF) fronthaul for high-bandwidth, high-capacity millimeter wave (mm-wave) extended fifth generation mobile network (5G) new radio (NR) signals over an optical distribution network with optical space division multiplexing (SDM). ARoF is shown to alleviate fronthaul capacity bottlenecks, transporting an 800 MHz wide extended 5G NR signal and allowing to maintain full centralization in a centralized radio access network (C-RAN). The proposed ARoF fronthaul architecture features a transmitter that generates the ARoF signal and an optical signal carrying a reference local oscillator (LO) employed for downconversion at the remote unit (RU) from a single radio frequency (RF) reference at the central office (CO). An SDM based RAN with 7-core multi-core fiber (MCF) allows parallel transport of the uplink ARoF signal and reference LO at the same wavelength over separate cores. Transmission of an 800 MHz wide extended 5G NR fronthaul signal over 7-core MCF is shown with full real-time processing, achieving 1.4 Gbit/s with BER<; 3.8 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-3</sup> and thus below the limit for hard-decision forward error correction (FEC) with 7 % overhead. Downconversion at the RU is performed electrically with the remote-fed LO provided by the CO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.