Abstract
This paper presents an approach to detect and recognize actions of interest in real-time from a continuous stream of data that are captured simultaneously from a Kinect depth camera and a wearable inertial sensor. Actions of interest are considered to appear continuously and in a random order among actions of non-interest. Skeleton depth images are first used to separate actions of interest from actions of non-interest based on pause and motion segments. Inertial signals from a wearable inertial sensor are then used to improve the recognition outcome. A dataset consisting of simultaneous depth and inertial data for the smart TV actions of interest occurring continuously and in a random order among actions of non-interest is studied and made publicly available. The results obtained indicate the effectiveness of the developed approach in coping with actions that are performed realistically in a continuous manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.