Abstract
Tomographic image reconstruction is computationally very demanding. In all cases the backprojection represents the performance bottleneck due to the high operational count and resulting high demand put on the memory subsystem. In this study, we present the implementation of a cone beam reconstruction algorithm on the Cell Broadband Engine (CBE) processor aimed at real-time applications. The cone-beam backprojection performance was assessed by backprojecting a half-circle scan of 512 projections of 10242 pixels into a volume of size 5123 voxels. The projections are acquired on a C-Arm scanner and directed in real time to a CBE-based platform for real-time reconstruction. The acquisition speed typically ranges between 17 and 35 projections per second. On a CBE processor clocked at 3.2 GHz, our implementation performs this task in ~13 seconds, allowing for real time reconstruction.© (2008) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.