Abstract

Anomaly detection generally requires real-time processing to find targets on a timely basis. However, for an algorithm to be implemented in real time, the used data samples can be only those up to the data sample being visited; no future data samples should be involved in the data processing. Such a property is generally called causality, which has unfortunately received little interest thus far in real-time hyperspectral data processing. This paper develops causal processing to perform anomaly detection that can be also implemented in real time. The ability of real-time causal processing is derived from the concept of innovations used to derive a Kalman filter via a recursive causal update equation. Specifically, two commonly used anomaly detectors, sample covariance matrix (K)-based Reed-Xiaoli detector (RXD), called K-RXD, and sample correlation matrix (R)-based RXD, called R-RXD, are derived for their real-time causal processing versions. To substantiate their utility in applications of anomaly detection, real image data sets are conducted for experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call