Abstract

A stable and efficient blast furnace operation requires proper control of hot metal and slag drainage from the hearth. Many operational problems such as non-dry casts, blow outs, excessive hearth lining wear and low-blast intake arise when the liquid level in the hearth exceeds the critical limit where hearth coke and deadman start to float. Since the direct measurement of the hearth liquid level is practically impossible due to high temperature and pressure inside the furnace, it is therefore important to estimate the liquid level in the hearth and display it to the operators on real-time basis for efficient cast management. This paper presents a system, called hearth liquid level monitoring (LLM), which simulates the liquid level and drainage behaviour of the furnace hearth. It is based on the theoretical hot metal and slag generation rate from the specific oxygen rate and the computed drainage rate from torpedo radar signals and the slag flow measurement system. The system advises the blast furnace operator when to initiate tapping and close the taphole when the liquid level is controlled. It also alerts operators when to use the larger drill bit diameter for opening the next cast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call