Abstract

The target of this research is to develop a machine-learning classification system for object detection based on three-dimensional (3D) Light Detection and Ranging (LiDAR) sensing. The proposed real-time system operates a LiDAR sensor on an industrial vehicle as part of upgrading the vehicle to provide autonomous capabilities. We have developed 3D features which allow a linear Support Vector Machine (SVM), Kernel (non-linear) SVM, as well as Multiple Kernel Learning (MKL), to determine if objects in the LiDARs field of view are beacons (an object designed to delineate a no-entry zone) or other objects (e.g. people, buildings, equipment, etc.). Results from multiple data collections are analyzed and presented. Moreover, the feature effectiveness and the pros and cons of each approach are examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.