Abstract

Abstract Objectives Intraoperative monitoring of blood flow (BF) remains vital to guiding surgical decisions. Here, we report the use of SurgeON™ Blood Flow Monitor (BFM), a prototype system that attaches to surgical microscopes and implements laser speckle contrast imaging (LSCI) to noninvasively obtain and present vascular BF information in real-time within the microscope’s eyepiece. Methods The ability of SurgeON BFM to monitor BF status during reversible vascular occlusion procedures was investigated in two large animal models: occlusion of saphenous veins in six NZW rabbit hindlimbs and clipping of middle cerebral artery (MCA) branches in four Dorset sheep brain hemispheres. SurgeON BFM acquired, presented, and stored LSCI-based blood flow velocity index (BFVi) data and performed indocyanine green video angiography (ICG-VA) for corroboration. Results Stored BFVi data were analyzed for each phase: pre-occlusion (baseline), with the vessel occluded (occlusion), and after reversal of occlusion (re-perfusion). In saphenous veins, BFVi relative to baseline reduced to 5.2±3.7 % during occlusion and returned to 102.9±14.9 % during re-perfusion. Unlike ICG-VA, SurgeON BFM was able to monitor reduced BFVi and characterize re-perfusion robustly during five serial occlusion procedures conducted 2–5 min apart on the same vessel. Across four sheep MCA vessels, BFVi reduced to 18.6±7.7 % and returned to 120.1±27.8 % of baseline during occlusion and re-perfusion phases, respectively. Conclusions SurgeON BFM can noninvasively monitor vascular occlusion status and provide intuitive visualization of BF information in real-time to an operating surgeon. This technology may find application in vascular, plastic, and neurovascular surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call