Abstract
In this paper, a new intelligent hardware module suitable for the computation of an adaptive median filter is presented for the first time. The function of the proposed circuit is to detect the existence of impulse noise in an image neighborhood and apply the operator of the median filter only when it is necessary. The noise detection procedure can be controlled so that a range of pixel values is considered as impulse noise. In this way, the blurring of the image in process is avoided, and the integrity of edge and detail information is preserved. Experimental results with real images demonstrate the improved performance. The proposed digital hardware structure is capable to process gray-scale images of 8-bit resolution and is fully pipelined, whereas parallel processing is used in order to minimize computational time. In the presented design, a 3/spl times/3 or 5/spl times/5 pixel image neighborhood can be selected for the computation of the filter output. However, the system can be easily expanded to accommodate windows of larger sizes. The proposed digital structure was designed, compiled and simulated using the MAX+PLUS II Programmable Logic Development System by Altera Corporation. For the implementation of the system the EPF10K200SRC240-1 field-programmable gate array device of the FLEX10KE device family is utilized, and it can be used in industrial imaging applications where fast processing is required. The typical clock frequency is 65 MHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.