Abstract

Real-time search is a well known approach to solving search problems under tight time constraints. Recently, it has been shown that LSS-LRTA∗ , a well-known real-time search algorithm, can be improved when search is actively guided away of depressions. In this paper we investigate whether or not RTAA∗ can be improved in the same manner. We propose aRTAA∗ and daRTAA∗ , two algorithms based on RTAA∗ that avoid heuristic depressions. Both algorithms outperform RTAA∗ on standard path-finding tasks, obtaining better-quality solutions when the same time deadline is imposed on the duration of the planning episode. We prove, in addition, that both algorithms have good theoretical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.