Abstract

Online 3D reconstruction of real-world scenes has been attracting increasing interests from both the academia and industry, especially with the consumer-level depth cameras becoming widely available. Recent most online reconstruction systems take live depth data from a moving Kinect camera and incrementally fuse them to a single high-quality 3D model in real time. Although most real-world scenes have static environment, the daily objects in a scene often move dynamically, which are non-trivial to reconstruct especially when the camera is also not still. To solve this problem, we propose a single depth camera-based real-time approach for simultaneous reconstruction of dynamic object and static environment, and provide solutions for its key issues. In particular, we first introduce a robust optimization scheme which takes advantage of raycasted maps to segment moving object and background from the live depth map. The corresponding depth data are then fused to the volumes, respectively. These volumes are raycasted to extract views of the implicit surface which can be used as a consistent reference frame for the next iteration of segmentation and tracking. Particularly, in order to handle fast motion of dynamic object and handheld camera in the fusion stage, we propose a sequential 6D pose prediction method which largely increases the registration robustness and avoids registration failures occurred in conventional methods. Experimental results show that our approach can reconstruct moving object as well as static environment with rich details, and outperform conventional methods in multiple aspects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.