Abstract

Respiration has a major impact on the accuracy of radiation treatment for thorax and abdominal tumours. Instantaneous volumetric imaging could provide precise knowledge of tumour and normal organs' three-dimensional (3D) movement, which is the key to reducing the negative effect of breathing motion. Therefore, this study proposed a real-time 3D MRI reconstruction method from cine-MRI using an unsupervised network. Cine-MRI and setup 3D-MRI from eight patients with liver cancer were utilized to establish and validate the deep learning network for 3D-MRI reconstruction. Unlike previous methods that required 4D-MRI for network training, the proposed method utilized a reference 3D-MRI and cine-MRI to generate the training data. Then, a network was trained in an unsupervised manner to estimate the relationship between the cine-MRI acquired on coronal plane and deformation vector field (DVF) that describes the patient's breathing motion. After the training process, the coronal cine-MRI were inputted into the network, and the corresponding DVF was obtained. By wrapping the reference 3D-MRI with the generated DVF, the 3D-MRI could be reconstructed. The reconstructed 3D-MRI slices were compared with the corresponding phase-sorted cine-MRI using dice similarity coefficients (DSCs) of liver contours and blood vessel localization error. In all patients, the liver DSC had mean value >96.1% and standard deviation<1.3%; the blood vessel localization error had mean value <2.6mm, and standard deviation was <2.0mm. Moreover, the time for 3D-MRI reconstruction was approximately 100ms. These results indicated that the proposed method could accurately reconstruct the 3D-MRI in real time. The proposed method could accurately reconstruct the 3D-MRI from cine-MRI in real time. This method has great potential in improving the accuracy of radiotherapy for moving tumours.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.