Abstract

The integration of highly efficient enzymatic catalysis with the solvation properties of ionic liquids for an environmentally friendly and efficient use of raw materials such as wood requires fundamental knowledge about the influence of relevant ionic liquids on enzymes. Switchable ionic liquids (SIL) are promising candidates for implementation of enzymatic treatments of raw materials. One industrially interesting SIL is constituted by monoethanol amine (MEA) and 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) formed with sulfur dioxide (SO2) as the coupling media (DBU-SO2-MEASIL). It has the ability to solubilize the matrix of lignocellulosic biomass while leaving the cellulose backbone intact. Using a novel (31)P NMR-based real-time assay we show that this SIL is compatible with enzymatic catalysis because a model enzyme, adenylate kinase, retains its activity in up to at least 25 wt % of DBU-SO2-MEASIL. Thus this SIL appears suitable for, for example, enzymatic degradation of hemicellulose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call