Abstract

Short-range magnetic correlations can significantly increase the thermopower of magnetic semiconductors, representing a noteworthy development in the decades-long effort to develop high-performance thermoelectric materials. Here, we reveal the nature of the thermopower-enhancing magnetic correlations in the antiferromagnetic semiconductor MnTe. Using magnetic pair distribution function analysis of neutron scattering data, we obtain a detailed, real-space view of robust, nanometer-scale, antiferromagnetic correlations that persist into the paramagnetic phase above the N\'eel temperature $T_{\mathrm{N}}$ = 307 K. The magnetic correlation length in the paramagnetic state is significantly longer along the crystallographic $c$ axis than within the $ab$ plane, pointing to anisotropic magnetic interactions. Ab initio calculations of the spin-spin correlations using density functional theory in the disordered local moment approach reproduce this result with quantitative accuracy. These findings constitute the first real-space picture of short-range spin correlations in a magnetically enhanced thermoelectric and inform future efforts to optimize thermoelectric performance by magnetic means.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.