Abstract

A major challenge for graphene-based applications is the creation of a tunable electronic band gap as would be present for traditional semiconductor alloys. Since hexagonal boron nitride has a very similar lattice structure to graphene, it is a natural candidate for modifying the electronic structure of graphene by forming a hybrid phase sheet containing domains of graphene and hexagonal boron nitride, as has been done experimentally. Here we investigate the properties of such hybrid sheets using pseudopotential-density functional theory implemented in real space. We find for a graphene dot comparable in size to those observed in experiment, the band gap of the sheet is not significantly modified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.