Abstract

Thermoelectric power generation is regarded as a promising technology to convert waste heat into electricity. This study aims to address the low conversion efficiency of thermoelectric modules and introduces a novel periodic heating method to enhance their performance. Two new indicators, time average ZTta value and effective conversion efficiency, are introduced to assess the dynamic behavior of thermoelectric modules. A Bi2Te3-based thermoelectric module with n-type Bi2Te3-xSex and p-type BixSb2-xTe3 materials is adopted as the research objective and tested on a designed transient experimental setup. Besides, a transient numerical model is developed to explore the optimal transient heat source and study the effect of various parameters on dynamic behavior. Compared with the steady-state efficiency of 3.76% and ZTta value of 0.78 at a heat supply of 60 W, the time average efficiency and ZTta value are improved by 52.93% and 43.59% respectively using the periodic heating method. Also, a smaller leg height, a larger leg area, more TE couples, and lower thermal conductivity are suggested for improving the dynamic behavior. This work offers a new periodic heating method to improve the output performance of thermoelectric modules, which may promote the broader application of thermoelectric power generation technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call