Abstract

The implementation of energy-saving policies has stimulated intensive interest in exploring self-powered optoelectronic devices. The 2D p-n homojunction exhibits effective generation and separation of carriers excited by light, realizing lower power consumption and higher performance photodetectors. Here, a self-powered photodetector with high performance is fabricated based on an F4-TCNQ localized molecular-doped lateral InSe homojunction. Compared with the intrinsic InSe photodetector, the switching light ratio (Ilight/Idark) of the p-n homojunction device can be enhanced by 2.2 × 104, and the temporal response is also dramatically improved to 24/30 μs. Benefiting from the built-in electric field, due to the formation of an InSe p-n homojunction after partial doping of F4-TCNQ on InSe, the device possesses a high responsivity (R) of 93.21 mA/W, with a specific detectivity (D*) of 1.14 × 1011 Jones. These results suggest a promising approach to get a lateral InSe p-n homojunction and reveal the potential application of the device for next generation low-consumption photodetectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.