Abstract

A key requirement for an integrated digital tool chain is secure access and control of data assets. Not all stakeholders will have the same access to or control over the flow of information, some will be able to input or change data whilst others will only be able to read the data. Simply providing secure access protocols is not sufficient because copied data can quickly become disassociated and modified from its original instantiation, leading to its reuse elsewhere or later in the lifecycle but in an inappropriate way. Therefore, data management mechanisms are required that capture information about the data along with any decisions or modifications it has undergone during the course of its life, thus providing complete traceability for later validation purposes. This undertaking is essential across the systems engineering lifecycle. This pursuit involves controlling who can access and modify data within the lifecycle. This paper describes a solution to this by the introduction of blockchain technology, a relatively new technology that allows digital information to be distributed but not copied, making it an immutable set of time-stamped data managed by a network of connected systems and services. Though blockchain technology is not commonly referred to when discussing Industry 4.0, the technology’s capabilities should add value when applied in a context of data management and security within the lifecycle of a product or services and in conjunction with digital twins, big data, and IoT. This paper describes how permissioned blockchains can be implemented within a systems engineering lifecycle, providing example architecture patterns showing how data provenance can be maintained throughout.

Highlights

  • Over recent years there has been a strong drive towards increasing interconnectivity between products, systems, and services, to provide enhanced or new capability that does not exist in any one individual element

  • This paper proposes a solution to this, which is the introduction of blockchain technology, a relatively new technology that allows digital information to be distributed but not copied, making it an immutable set of time-stamped data managed by a network of computers

  • This paper has shown there is potential value for implementing blockchain, permissioned blockchains, within a systems engineering (SE) lifecycle to help to cope with the complexities of complex SoS

Read more

Summary

Introduction

Over recent years there has been a strong drive towards increasing interconnectivity between products, systems, and services, to provide enhanced or new capability that does not exist in any one individual element. Recent advancements in MBSE are regarded as a solution to managing complexity and guiding the development of systems throughout their lifecycles [6] It has been reported [6,7]. This paper proposes a solution to this, which is the introduction of blockchain technology, a relatively new technology that allows digital information to be distributed but not copied, making it an immutable set of time-stamped data managed by a network of computers. This paper shows how a specific form of blockchain technology known as permissioned blockchains can overcome the data challenges within complex SE processes. Examples of such challenges come from commonly used centralized database systems that struggle with data security, availability and flexibility.

Current Uses of Blockchain Technology
Financial Applications
Data Management
Governance
Integrity Verification
Supply Chain Management
Blockchain Technology and Permissioned Blockchains
Participants
The Role of Permissioned Blockchains in the Systems Engineering Lifecycle
Findings
Architecture Patterns for Permissioned Blockchain Integration
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.