Abstract

We report on the insulator-to-metal transition in Se-hyperdoped Si layers driven by manipulating the Se concentration via non-equilibrium material processing, i.e. ion implantation followed by millisecond-flash lamp annealing. Electrical transport measurements reveal an increase of the carrier concentration and conductivity with the increasing Se concentration. For the semi-insulating sample with Se concentrations below the Mott limit, quantitative analysis of the temperature dependence of the conductivity indicates a variable-range hopping mechanism with an exponent of s = 1/2 rather than 1/4, which implies a Coulomb gap at the Fermi level. The observed insulator-to-metal transition is attributed to the formation of an intermediate band in the Se-hyperdoped Si layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.