Abstract

Direct photocatalytic hydrogen and oxygen evolution from water splitting is an attractive approach for producing chemical fuels. In this work, a novel fluorenone-based covalent organic framework (COF-SCAU-2) is successfully exfoliated into ultrathin three-layer nanosheets (UCOF-SCAU-2) for photocatalytic overall water splitting (OWS) under visible light. The ultrathin structures of UCOF-SCAU-2 greatly enhance carrier separation, utilization efficiency, and the exposure of active surface sites. Surprisingly, UCOF-SCAU-2 exhibits efficient photocatalytic OWS performance, with hydrogen and oxygen evolution rates reaching 0.046 and 0.021 mmol h-1 g-1 , respectively,under visible-light irradiation, whereas bulk COF-SCAU-2 shows no activity for photocatalytic OWS. Charge-carrier kinetic analysis and DFT calculations confirm that reducing the thickness of the COF nanosheets increasesthe number ofaccessible active sites, reduces the distance for charge migration, prolongs the lifetimes of photogenerated carriers, and decreases the Gibbs free energy of the rate-limiting step compared to nonexfoliated COFs. This work offers new insights into the effect of the layer thickness of COFs on photocatalytic OWS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.