Abstract

The hollow porous structure with exceptional interfacial effect and customizable internal environment shows significant potential for application as electromagnetic shielding and absorption materials. However, designing hollow porous electromagnetic absorbers with both desirable impedance matching and high loss capability remains a challenge. Herein, 3D hollow porous electromagnetic microspheres were constructed by assembling 0D Co magnetic nanoparticles, 1D carbon nanotubes, and 2D carbon nanosheets. Due to the sufficient sites for Co2+ riveting, the high loading of magnetic carbon nanotubes (CoNC) and porous carbon spheres formed high-density interfaces, enhancing the interfacial polarization. Furthermore, high-density CoNC were grown in situ on the hollow porous carbon (HPC) microsphere, forming a highly dispersed 3D magnetic network that inhibited the aggregation of magnetic nanoparticles and enhanced magnetic coupling. Therefore, the as-prepared CoNC/HPC microspheres exhibited excellent microwave absorption (MA) performance, with a minimum reflection loss of -33.2 dB and an effective bandwidth of 5.5 GHz at a thickness of only 1.8 mm. The interfacial polarization mechanism for enhanced MA performance was demonstrated by electron holography and density functional theory calculations. Magnetic holography and micromagnetic simulations also revealed magnetic confinement and coupling mechanism. This work provides a new approach for designing electromagnetic absorbers with optimized impedance matching and loss capability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call